Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Endocrinol Invest ; 45(3): 537-550, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1474191

ABSTRACT

PURPOSE: Coronavirus Disease 2019 (COVID-19) severity and Diabetes mellitus affect each other bidirectionally. However, the cause of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection on the incidence of diabetes is unclear. In the SARS-CoV-2-infected cells, host microRNAs (miRNAs) may target the native gene transcripts as well as the viral genomic and subgenomic RNAs. Here, we investigated the role of miRNAs in linking Diabetes to SARS-CoV-2 infection in the human pancreas. METHODS: Differential gene expression and disease enrichment analyses were performed on an RNA-Seq dataset of human embryonic stem cell-derived (hESC) mock-infected and SARS-CoV-2-infected pancreatic organoids to obtain the dysregulated Diabetes-associated genes. The miRNA target prediction for the Diabetes-associated gene transcripts and the SARS-CoV-2 RNAs has been made to determine the common miRNAs targeting them. Minimum Free Energy (MFE) analysis was done to identify the miRNAs, preferably targeting SARS-CoV-2 RNAs over the Diabetes-associated gene transcripts. RESULTS: The gene expression and disease enrichment analyses of the RNA-Seq data have revealed five biomarker genes, i.e., CP, SOCS3, AGT, PSMB8 and CFB that are associated with Diabetes and get significantly upregulated in the pancreas following SARS-CoV-2-infection. Four miRNAs, i.e., hsa-miR-298, hsa-miR-3925-5p, hsa-miR-4691-3p and hsa-miR-5196-5p, showed preferential targeting of the SARS-CoV-2 genome over the cell's Diabetes-associated messenger RNAs (mRNAs) in the human pancreas. CONCLUSION: Our study proposes that the differential targeting of the Diabetes-associated host genes by the miRNAs may lead to diabetic complications or new-onset Diabetes that can worsen the condition of COVID-19 patients.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Diabetes Mellitus/genetics , MicroRNAs/genetics , Pancreas/virology , SARS-CoV-2/genetics , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , COVID-19/virology , Comorbidity , Gene Expression Regulation/genetics , Humans , Pancreas/chemistry , Pancreas/metabolism , RNA, Messenger/genetics , RNA, Viral/genetics
2.
Trends Endocrinol Metab ; 32(11): 842-845, 2021 11.
Article in English | MEDLINE | ID: covidwho-1349597

ABSTRACT

The widespread extrapulmonary complications of coronavirus disease 2019 (COVID-19) have gained momentum; the pancreas is another major target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we take a closer look into potential pathological interactions. We provide an overview of the current knowledge and understanding of SARS-CoV-2 infection of the pancreas with a special focus on pancreatic islets and propose direct, indirect, and systemic mechanisms for pancreas injury as result of the COVID-19-diabetes fatal bidirectional relationship.


Subject(s)
COVID-19/metabolism , Diabetes Mellitus/metabolism , Insulin-Secreting Cells/metabolism , Acinar Cells/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Glucagon-Secreting Cells/metabolism , Humans , Islets of Langerhans/metabolism , Pancreas/metabolism , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Viral Tropism
3.
Cell Metab ; 32(6): 1028-1040.e4, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1310646

ABSTRACT

Isolated reports of new-onset diabetes in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2 is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into ß cells via co-expression of its canonical cell entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2); however, their expression in human pancreas has not been clearly defined. We analyzed six transcriptional datasets of primary human islet cells and found that ACE2 and TMPRSS2 were not co-expressed in single ß cells. In pancreatic sections, ACE2 and TMPRSS2 protein was not detected in ß cells from donors with and without diabetes. Instead, ACE2 protein was expressed in islet and exocrine tissue microvasculature and in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. These findings reduce the likelihood that SARS-CoV-2 directly infects ß cells in vivo through ACE2 and TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Diabetes Mellitus/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/complications , COVID-19/genetics , Cells, Cultured , Diabetes Complications/genetics , Diabetes Complications/metabolism , Diabetes Mellitus/genetics , Gene Expression , Humans , Insulin-Secreting Cells/metabolism , Mice , Microvessels/metabolism , Pancreas/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Serine Endopeptidases/analysis , Serine Endopeptidases/genetics
5.
United European Gastroenterol J ; 9(7): 750-765, 2021 09.
Article in English | MEDLINE | ID: covidwho-1287407

ABSTRACT

BACKGROUND: The COVID-19 pandemic has created unprecedented challenges in all fields of society with social, economic, and health-related consequences worldwide. In this context, gastroenterology patients and healthcare systems and professionals have seen their routines changed and were forced to adapt, adopting measures to minimize the risk of infection while guaranteeing continuous medical care to chronic patients. OBJECTIVE: At this point, it is important to evaluate the impact of the pandemic on this field to further improve the quality of the services provided in this context. METHODS/RESULTS/CONCLUSION: We performed a literature review that summarizes the main aspects to consider in gastroenterology, during the pandemic crisis, and includes a deep discussion on the main changes affecting gastroenterology patients and healthcare systems, anticipating the pandemic recovery scenario with future practices and policies.


Subject(s)
COVID-19/physiopathology , Delivery of Health Care , Gastroenterology , Immunosuppressive Agents/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Liver Diseases/physiopathology , Biomarkers , COVID-19/complications , COVID-19/immunology , Disease Management , Endoscopy, Digestive System , Gastrointestinal Diseases/etiology , Gastrointestinal Diseases/physiopathology , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Liver Diseases/complications , Liver Diseases/surgery , Liver Transplantation , Pancreas/metabolism , Pancreas/physiopathology , Risk Factors , SARS-CoV-2 , Telemedicine
7.
Front Immunol ; 12: 597399, 2021.
Article in English | MEDLINE | ID: covidwho-1167337

ABSTRACT

There exists increasing evidence that people with preceding medical conditions, such as diabetes and cancer, have a higher risk of infection with SARS-CoV-2 and are more vulnerable to severe disease. To get insights into the possible role of the immune system upon COVID-19 infection, 2811 genes of the gene ontology term "immune system process GO: 0002376" were selected for coexpression analysis of the human targets of SARS-CoV-2 (HT-SARS-CoV-2) ACE2, TMPRSS2, and FURIN in tissue samples from patients with cancer and diabetes mellitus. The network between HT-SARS-CoV-2 and immune system process genes was analyzed based on functional protein associations using STRING. In addition, STITCH was employed to determine druggable targets. DPP4 was the only immune system process gene, which was coexpressed with the three HT-SARS-CoV-2 genes, while eight other immune genes were at least coexpressed with two HT-SARS-CoV-2 genes. STRING analysis between immune and HT-SARS-CoV-2 genes plotted 19 associations of which there were eight common networking genes in mixed healthy (323) and pan-cancer (11003) tissues in addition to normal (87), cancer (90), and diabetic (128) pancreatic tissues. Using this approach, three commonly applicable druggable connections between HT-SARS-CoV-2 and immune system process genes were identified. These include positive associations of ACE2-DPP4 and TMPRSS2-SRC as well as a negative association of FURIN with ADAM17. Furthermore, 16 drugs were extracted from STITCH (score <0.8) with 32 target genes. Thus, an immunological network associated with HT-SARS-CoV-2 using bioinformatics tools was identified leading to novel therapeutic opportunities for COVID-19.


Subject(s)
Diabetes Mellitus/metabolism , Neoplasms/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Databases, Genetic , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Furin/genetics , Furin/metabolism , Gene Expression Regulation/immunology , Gene Ontology , Genome-Wide Association Study , Genomics , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/virology , Pancreas/immunology , Pancreas/metabolism , Pancreas/virology , Protein Interaction Maps/genetics , Protein Interaction Maps/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , COVID-19 Drug Treatment
8.
Front Endocrinol (Lausanne) ; 11: 596898, 2020.
Article in English | MEDLINE | ID: covidwho-1011403

ABSTRACT

Increasing evidence demonstrated that the expression of Angiotensin I-Converting Enzyme type 2 (ACE2) is a necessary step for SARS-CoV-2 infection permissiveness. In light of the recent data highlighting an association between COVID-19 and diabetes, a detailed analysis aimed at evaluating ACE2 expression pattern distribution in human pancreas is still lacking. Here, we took advantage of INNODIA network EUnPOD biobank collection to thoroughly analyze ACE2, both at mRNA and protein level, in multiple human pancreatic tissues and using several methodologies. Using multiple reagents and antibodies, we showed that ACE2 is expressed in human pancreatic islets, where it is preferentially expressed in subsets of insulin producing ß-cells. ACE2 is also highly expressed in pancreas microvasculature pericytes and moderately expressed in rare scattered ductal cells. By using different ACE2 antibodies we showed that a recently described short-ACE2 isoform is also prevalently expressed in human ß-cells. Finally, using RT-qPCR, RNA-seq and High-Content imaging screening analysis, we demonstrated that pro-inflammatory cytokines, but not palmitate, increase ACE2 expression in the ß-cell line EndoC-ßH1 and in primary human pancreatic islets. Taken together, our data indicate a potential link between SARS-CoV-2 and diabetes through putative infection of pancreatic microvasculature and/or ductal cells and/or through direct ß-cell virus tropism.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Insulin-Secreting Cells/metabolism , Microvessels/metabolism , Pancreas/metabolism , SARS-CoV-2/isolation & purification , COVID-19/metabolism , COVID-19/pathology , Cells, Cultured , Cytokines/metabolism , Humans , Insulin-Secreting Cells/virology , Microvessels/virology , Pancreas/virology
9.
Cell Metab ; 32(6): 1041-1051.e6, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-921862

ABSTRACT

Diabetes is associated with increased mortality from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Given literature suggesting a potential association between SARS-CoV-2 infection and diabetes induction, we examined pancreatic expression of angiotensin-converting enzyme 2 (ACE2), the key entry factor for SARS-CoV-2 infection. Specifically, we analyzed five public scRNA-seq pancreas datasets and performed fluorescence in situ hybridization, western blotting, and immunolocalization for ACE2 with extensive reagent validation on normal human pancreatic tissues across the lifespan, as well as those from coronavirus disease 2019 (COVID-19) cases. These in silico and ex vivo analyses demonstrated prominent expression of ACE2 in pancreatic ductal epithelium and microvasculature, but we found rare endocrine cell expression at the mRNA level. Pancreata from individuals with COVID-19 demonstrated multiple thrombotic lesions with SARS-CoV-2 nucleocapsid protein expression that was primarily limited to ducts. These results suggest SARS-CoV-2 infection of pancreatic endocrine cells, via ACE2, is an unlikely central pathogenic feature of COVID-19-related diabetes.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Pancreas/metabolism , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Expression , Humans , Pancreas/blood supply , Serine Endopeptidases/analysis , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Tissue Donors
10.
J Diabetes Investig ; 11(5): 1104-1114, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-724172

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global pandemic that is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus-2. Data from several countries have shown higher morbidity and mortality among individuals with chronic metabolic diseases, such as diabetes mellitus. In this review, we explore the contributing factors for poorer prognosis in these individuals. As a significant proportion of patients with COVID-19 also have diabetes mellitus, this adds another layer of complexity to their management. We explore potential interactions between antidiabetic medications and renin-angiotensin-aldosterone system inhibitors with COVID-19. Suggested recommendations for the use of antidiabetic medications for COVID-19 patients with diabetes mellitus are provided. We also review pertinent clinical considerations in the management of diabetic ketoacidosis in COVID-19 patients. In addition, we aim to increase clinicians' awareness of the metabolic effects of promising drug therapies for COVID-19. Finally, we highlight the importance of timely vaccinations for patients with diabetes mellitus.


Subject(s)
COVID-19/immunology , Diabetes Complications/immunology , Diabetes Mellitus/immunology , Obesity/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Blood Glucose/metabolism , COVID-19/complications , COVID-19/metabolism , COVID-19 Vaccines/therapeutic use , Chloroquine/therapeutic use , Comorbidity , Diabetes Complications/drug therapy , Diabetes Complications/metabolism , Diabetes Complications/physiopathology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Diabetic Ketoacidosis/complications , Diabetic Ketoacidosis/therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Drug Combinations , Glucagon-Like Peptide-1 Receptor/agonists , Glycemic Control , Humans , Hydroxychloroquine/therapeutic use , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Resistance , Insulin Secretion , Interferon Type I/therapeutic use , Lopinavir/therapeutic use , Lung/physiopathology , Metformin/therapeutic use , Obesity/complications , Obesity/metabolism , Obesity/physiopathology , Pancreas/metabolism , Ritonavir/therapeutic use , Severity of Illness Index , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sulfonylurea Compounds/therapeutic use , Thiazolidinediones/therapeutic use , COVID-19 Drug Treatment
11.
Clin Transl Gastroenterol ; 11(7): e00215, 2020 07.
Article in English | MEDLINE | ID: covidwho-681344

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic of coronavirus disease 2019 (COVID-19) is a global health crisis. Possible pancreatic involvement has recently been observed in these patients; however, its significance is unclear. The aim of this study was to evaluate the association of significantly elevated lipase with disease outcomes. METHODS: Data about demographics, symptoms, laboratory values, and clinical outcomes were collected for 1,003 consecutive patients testing positive for COVID-19. Elevated lipase was defined as greater than 3 times the upper limit of normal (>3 × ULN). Baseline characteristics among patients with or without elevated lipase were compared using Fisher exact test or Student t-test for categorical or numerical variables, respectively. Logistic regression was used to evaluate the association of lipase levels with primary clinical outcomes (intensive care unit admission and intubation) adjusted for age, sex, body mass index, history of diabetes, and hypertension. RESULTS: Of 1,003 patients with COVID-19, 83 had available lipase levels and were all admitted to the hospital. Of 83, 14 (16.8%) had elevated lipase (>3 × ULN), which was associated with higher rates of leukocytosis (P < 0.001) and abnormal liver enzymes (P < 0.01). Compared with lower lipase levels (<3 × ULN), patients with elevated lipase had higher rates of ICU admission (92.9% vs 32.8%; P < 0.001) and intubation (78.6% vs 23.5%; P 0.002). In a multivariable-adjusted model, higher lipase levels were significantly associated with admission to the ICU and rate of intubation. DISCUSSION: Lipase elevation is seen in COVID-19 and is associated with worse disease outcomes.


Subject(s)
Betacoronavirus , Coronavirus Infections , Lipase/blood , Obesity , Pancreas , Pandemics , Pneumonia, Viral , Aged , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , Body Mass Index , COVID-19 , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Female , Humans , Male , Middle Aged , Obesity/diagnosis , Obesity/epidemiology , Pancreas/metabolism , Pancreas/physiopathology , Pancreas/virology , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL